

Earth's Waters

Earth's Waters Unit includes:

- Print and digital Interactive Notebooks
- Editable Resources, including notes, PowerPoints, and test
- Instructional Videos
- Teacher-led Demos & Guided Inquiry Labs
- Task Cards & Digital Task Cards
- Study Guides

Suggested Pacing Guide

The following is a **suggested pacing guide** for my COMPLETE COURSES (Earth, Life or Physical Science) which are based on 50-minute class periods. There are three variations below. Each variation is based on the [number of sections in your SCIENCE INTERACTIVE NOTEBOOK chapter](#).

Based on a **4-Section Chapter**

Day	Lesson/Activity	Engage	Explain	Explore	Elaborate	Evaluate
1	• Teacher Demo	x				
	• Section 1 Notes – INB input		x			
	• INB Activity – INB output (homework if not completed in class)			x		
2	• Mini-quiz					x
	• Section 2 Notes – use PowerPoint	x				
	• INB Activity		x			
3	• Mini-quiz					x
4	• Guided Inquiry Lab – Student Led		x			
	• Section 3 Notes – use PowerPoint	x				
	• INB Activity		x			
5	• Mini-quiz					x
	• Section 4 Notes – use PowerPoint	x				
	• INB Activity		x			
6	• Mini quiz					x
7	• Science Stations			x		
	• Science Stations			x		
	• Final draft and testing for Creation Station (STEM)			x	x	
9	• Task Card Review (game-style, full class, partner)			x		
	• Chapter Test					x
	• Have students complete notes for next chapter*	x				

* **Note-taking option:** Once students are done with chapter test, they get the next set of notes and work quietly on completing them while other students finish up. All notes are to be completed when they return to class. Have students glue each page of notes into the next few pages of their INB (right side only). This way, when you go over the PowerPoint each day, they have already reviewed topic and are ready for class.

5 E Model

Engage – Teacher-led demos foster wonder and classroom discussion and serve as the hook for the lesson. Videos and images of natural phenomena also foster questioning and communication. NGSS phenomena are aligned to middle school NGSS standards.

Explain – PowerPoints, instructional videos, and guided notes (input side of interactive notebooks) provide definitions, explanations, and information through mini-lecture, text, internet, and other resources which encourages students to explain concepts and definitions in their own words.

Explore – Students investigate problems, events, or situations. As a result of their mental and physical involvement in these activities, students question events, observe patterns, identify and test variables, and communicate results.

Elaborate – It is important to involve students in further experiences that apply, extend, or elaborate the concepts, processes, or skill they are learning. Elaborate activities provide time for students to apply their understanding of concepts and skills. They might apply their understanding to similar phenomena or problems.

Evaluate – Use a variety of assessment to gather evidence of student's understanding and provide opportunities for them to assess their own progress.

Student Interactive Notebook

Each concept shares:

- Actual photos of both the INPUT and OUTPUT pages of Science Interactive Notebook
- Instructions on how to create/use/complete activity for OUTPUT side
- Mini-Quizzes for each concept to check students' understanding
- Answer Keys for all mini-quizzes
- Appendix with Teacher Notes for Interactive Notebook in LARGE print.

Table of Contents: Earth & Water

Section	Page
Introduction	1
Section 1: Earth The Water Planet	2-3
Section 2: Water Cycle	4-5
Section 3: Composition & Characteristics of Oceans	6-7
Section 4: Ocean Zones	8-9
Section 5: Ocean Floor	10-11
Section 6: Ocean Currents	12-13
Section 7: Ocean Tides	14-15
Section 8: Ocean Currents	16-17
Section 9: Ocean Currents	18-19
Section 10: Ocean Currents	20-21
Section 11: Ocean Currents	22-23
Section 12: Ocean Currents	24-25
Section 13: Ocean Currents	26-27
Section 14: Ocean Currents	28-29
Section 15: Ocean Currents	30-31
Section 16: Ocean Currents	32-33
Section 17: Ocean Currents	34-35
Section 18: Ocean Currents	36-37
Section 19: Ocean Currents	38-39
Section 20: Ocean Currents	40-41
Section 21: Ocean Currents	42-43
Section 22: Ocean Currents	44-45
Section 23: Ocean Currents	46-47
Section 24: Ocean Currents	48-49
Section 25: Ocean Currents	50-51
Section 26: Ocean Currents	52-53
Section 27: Ocean Currents	54-55
Section 28: Ocean Currents	56-57
Section 29: Ocean Currents	58-59
Section 30: Ocean Currents	60-61
Section 31: Ocean Currents	62-63
Section 32: Ocean Currents	64-65
Section 33: Ocean Currents	66-67
Section 34: Ocean Currents	68-69
Section 35: Ocean Currents	70-71
Section 36: Ocean Currents	72-73
Section 37: Ocean Currents	74-75
Section 38: Ocean Currents	76-77
Section 39: Ocean Currents	78-79
Section 40: Ocean Currents	80-81
Section 41: Ocean Currents	82-83
Section 42: Ocean Currents	84-85
Section 43: Ocean Currents	86-87
Section 44: Ocean Currents	88-89
Section 45: Ocean Currents	90-91
Section 46: Ocean Currents	92-93
Section 47: Ocean Currents	94-95
Section 48: Ocean Currents	96-97
Section 49: Ocean Currents	98-99
Section 50: Ocean Currents	100-101
Section 51: Ocean Currents	102-103
Section 52: Ocean Currents	104-105
Section 53: Ocean Currents	106-107
Section 54: Ocean Currents	108-109
Section 55: Ocean Currents	110-111
Section 56: Ocean Currents	112-113
Section 57: Ocean Currents	114-115
Section 58: Ocean Currents	116-117
Section 59: Ocean Currents	118-119
Section 60: Ocean Currents	120-121
Section 61: Ocean Currents	122-123
Section 62: Ocean Currents	124-125
Section 63: Ocean Currents	126-127
Section 64: Ocean Currents	128-129
Section 65: Ocean Currents	130-131
Section 66: Ocean Currents	132-133
Section 67: Ocean Currents	134-135
Section 68: Ocean Currents	136-137
Section 69: Ocean Currents	138-139
Section 70: Ocean Currents	140-141
Section 71: Ocean Currents	142-143
Section 72: Ocean Currents	144-145
Section 73: Ocean Currents	146-147
Section 74: Ocean Currents	148-149
Section 75: Ocean Currents	150-151
Section 76: Ocean Currents	152-153
Section 77: Ocean Currents	154-155
Section 78: Ocean Currents	156-157
Section 79: Ocean Currents	158-159
Section 80: Ocean Currents	160-161
Section 81: Ocean Currents	162-163
Section 82: Ocean Currents	164-165
Section 83: Ocean Currents	166-167
Section 84: Ocean Currents	168-169
Section 85: Ocean Currents	170-171
Section 86: Ocean Currents	172-173
Section 87: Ocean Currents	174-175
Section 88: Ocean Currents	176-177
Section 89: Ocean Currents	178-179
Section 90: Ocean Currents	180-181
Section 91: Ocean Currents	182-183
Section 92: Ocean Currents	184-185
Section 93: Ocean Currents	186-187
Section 94: Ocean Currents	188-189
Section 95: Ocean Currents	190-191
Section 96: Ocean Currents	192-193
Section 97: Ocean Currents	194-195
Section 98: Ocean Currents	196-197
Section 99: Ocean Currents	198-199
Section 100: Ocean Currents	200-201
Section 101: Ocean Currents	202-203
Section 102: Ocean Currents	204-205
Section 103: Ocean Currents	206-207
Section 104: Ocean Currents	208-209
Section 105: Ocean Currents	210-211
Section 106: Ocean Currents	212-213
Section 107: Ocean Currents	214-215
Section 108: Ocean Currents	216-217
Section 109: Ocean Currents	218-219
Section 110: Ocean Currents	220-221
Section 111: Ocean Currents	222-223
Section 112: Ocean Currents	224-225
Section 113: Ocean Currents	226-227
Section 114: Ocean Currents	228-229
Section 115: Ocean Currents	230-231
Section 116: Ocean Currents	232-233
Section 117: Ocean Currents	234-235
Section 118: Ocean Currents	236-237
Section 119: Ocean Currents	238-239
Section 120: Ocean Currents	240-241
Section 121: Ocean Currents	242-243
Section 122: Ocean Currents	244-245
Section 123: Ocean Currents	246-247
Section 124: Ocean Currents	248-249
Section 125: Ocean Currents	250-251
Section 126: Ocean Currents	252-253
Section 127: Ocean Currents	254-255
Section 128: Ocean Currents	256-257
Section 129: Ocean Currents	258-259
Section 130: Ocean Currents	260-261
Section 131: Ocean Currents	262-263
Section 132: Ocean Currents	264-265
Section 133: Ocean Currents	266-267
Section 134: Ocean Currents	268-269
Section 135: Ocean Currents	270-271
Section 136: Ocean Currents	272-273
Section 137: Ocean Currents	274-275
Section 138: Ocean Currents	276-277
Section 139: Ocean Currents	278-279
Section 140: Ocean Currents	280-281
Section 141: Ocean Currents	282-283
Section 142: Ocean Currents	284-285
Section 143: Ocean Currents	286-287
Section 144: Ocean Currents	288-289
Section 145: Ocean Currents	290-291
Section 146: Ocean Currents	292-293
Section 147: Ocean Currents	294-295
Section 148: Ocean Currents	296-297
Section 149: Ocean Currents	298-299
Section 150: Ocean Currents	300-301
Section 151: Ocean Currents	302-303
Section 152: Ocean Currents	304-305
Section 153: Ocean Currents	306-307
Section 154: Ocean Currents	308-309
Section 155: Ocean Currents	310-311
Section 156: Ocean Currents	312-313
Section 157: Ocean Currents	314-315
Section 158: Ocean Currents	316-317
Section 159: Ocean Currents	318-319
Section 160: Ocean Currents	320-321
Section 161: Ocean Currents	322-323
Section 162: Ocean Currents	324-325
Section 163: Ocean Currents	326-327
Section 164: Ocean Currents	328-329
Section 165: Ocean Currents	330-331
Section 166: Ocean Currents	332-333
Section 167: Ocean Currents	334-335
Section 168: Ocean Currents	336-337
Section 169: Ocean Currents	338-339
Section 170: Ocean Currents	340-341
Section 171: Ocean Currents	342-343
Section 172: Ocean Currents	344-345
Section 173: Ocean Currents	346-347
Section 174: Ocean Currents	348-349
Section 175: Ocean Currents	350-351
Section 176: Ocean Currents	352-353
Section 177: Ocean Currents	354-355
Section 178: Ocean Currents	356-357
Section 179: Ocean Currents	358-359
Section 180: Ocean Currents	360-361
Section 181: Ocean Currents	362-363
Section 182: Ocean Currents	364-365
Section 183: Ocean Currents	366-367
Section 184: Ocean Currents	368-369
Section 185: Ocean Currents	370-371
Section 186: Ocean Currents	372-373
Section 187: Ocean Currents	374-375
Section 188: Ocean Currents	376-377
Section 189: Ocean Currents	378-379
Section 190: Ocean Currents	380-381
Section 191: Ocean Currents	382-383
Section 192: Ocean Currents	384-385
Section 193: Ocean Currents	386-387
Section 194: Ocean Currents	388-389
Section 195: Ocean Currents	390-391
Section 196: Ocean Currents	392-393
Section 197: Ocean Currents	394-395
Section 198: Ocean Currents	396-397
Section 199: Ocean Currents	398-399
Section 200: Ocean Currents	400-401
Section 201: Ocean Currents	402-403
Section 202: Ocean Currents	404-405
Section 203: Ocean Currents	406-407
Section 204: Ocean Currents	408-409
Section 205: Ocean Currents	410-411
Section 206: Ocean Currents	412-413
Section 207: Ocean Currents	414-415
Section 208: Ocean Currents	416-417
Section 209: Ocean Currents	418-419
Section 210: Ocean Currents	420-421
Section 211: Ocean Currents	422-423
Section 212: Ocean Currents	424-425
Section 213: Ocean Currents	426-427
Section 214: Ocean Currents	428-429
Section 215: Ocean Currents	430-431
Section 216: Ocean Currents	432-433
Section 217: Ocean Currents	434-435
Section 218: Ocean Currents	436-437
Section 219: Ocean Currents	438-439
Section 220: Ocean Currents	440-441
Section 221: Ocean Currents	442-443
Section 222: Ocean Currents	444-445
Section 223: Ocean Currents	446-447
Section 224: Ocean Currents	448-449
Section 225: Ocean Currents	450-451
Section 226: Ocean Currents	452-453
Section 227: Ocean Currents	454-455
Section 228: Ocean Currents	456-457
Section 229: Ocean Currents	458-459
Section 230: Ocean Currents	460-461
Section 231: Ocean Currents	462-463
Section 232: Ocean Currents	464-465
Section 233: Ocean Currents	466-467
Section 234: Ocean Currents	468-469
Section 235: Ocean Currents	470-471
Section 236: Ocean Currents	472-473
Section 237: Ocean Currents	474-475
Section 238: Ocean Currents	476-477
Section 239: Ocean Currents	478-479
Section 240: Ocean Currents	480-481
Section 241: Ocean Currents	482-483
Section 242: Ocean Currents	484-485
Section 243: Ocean Currents	486-487
Section 244: Ocean Currents	488-489
Section 245: Ocean Currents	490-491
Section 246: Ocean Currents	492-493
Section 247: Ocean Currents	494-495
Section 248: Ocean Currents	496-497
Section 249: Ocean Currents	498-499
Section 250: Ocean Currents	500-501
Section 251: Ocean Currents	502-503
Section 252: Ocean Currents	504-505
Section 253: Ocean Currents	506-507
Section 254: Ocean Currents	508-509
Section 255: Ocean Currents	510-511
Section 256: Ocean Currents	512-513
Section 257: Ocean Currents	514-515
Section 258: Ocean Currents	516-517
Section 259: Ocean Currents	518-519
Section 260: Ocean Currents	520-521
Section 261: Ocean Currents	522-523
Section 262: Ocean Currents	524-525
Section 263: Ocean Currents	526-527
Section 264: Ocean Currents	528-529
Section 265: Ocean Currents	530-531
Section 266: Ocean Currents	532-533
Section 267: Ocean Currents	534-535
Section 268: Ocean Currents	536-537
Section 269: Ocean Currents	538-539
Section 270: Ocean Currents	540-541
Section 271: Ocean Currents	542-543
Section 272: Ocean Currents	544-545
Section 273: Ocean Currents	546-547
Section 274: Ocean Currents	548-549
Section 275: Ocean Currents	550-551
Section 276: Ocean Currents	552-553
Section 277: Ocean Currents	554-555
Section 278: Ocean Currents	556-557
Section 279: Ocean Currents	558-559
Section 280: Ocean Currents	560-561
Section 281: Ocean Currents	562-563
Section 282: Ocean Currents	564-565
Section 283: Ocean Currents	566-567
Section 284: Ocean Currents	568-569
Section 285: Ocean Currents	570-571
Section 286: Ocean Currents	572-573
Section 287: Ocean Currents	574-575
Section 288: Ocean Currents	576-577
Section 289: Ocean Currents	578-579
Section 290: Ocean Currents	580-581
Section 291: Ocean Currents	582-583
Section 292: Ocean Currents	584-585
Section 293: Ocean Currents	586-587
Section 294: Ocean Currents	588-589
Section 295: Ocean Currents	590-591
Section 296: Ocean Currents	592-593
Section 297: Ocean Currents	594-595
Section 298: Ocean Currents	596-597
Section 299: Ocean Currents	598-599
Section 300: Ocean Currents	600-601
Section 301: Ocean Currents	602-603
Section 302: Ocean Currents	604-605
Section 303: Ocean Currents	606-607
Section 304: Ocean Currents	608-609
Section 305: Ocean Currents	610-611
Section 306: Ocean Currents	612-613
Section 307: Ocean Currents	614-615
Section 308: Ocean Currents	616-617
Section 309: Ocean Currents	618-619
Section 310: Ocean Currents	620-621
Section 311: Ocean Currents	622-623
Section 312: Ocean Currents	624-625
Section 313: Ocean Currents	626-627
Section 314: Ocean Currents	628-629
Section 315: Ocean Currents	630-631
Section 316: Ocean Currents	632-633
Section 317: Ocean Currents	634-635
Section 318: Ocean Currents	636-637
Section 319: Ocean Currents	638-639
Section 320: Ocean Currents	640-641
Section 321: Ocean Currents	642-643
Section 322: Ocean Currents	644-645
Section 323: Ocean Currents	646-647
Section 324: Ocean Currents	648-649
Section 325: Ocean Currents	650-651
Section 326: Ocean Currents	652-653
Section 327: Ocean Currents	654-655
Section 328: Ocean Currents	656-657
Section 329: Ocean Currents	658-659
Section 330: Ocean Currents	660-661
Section 331: Ocean Currents	662-663
Section 332: Ocean Currents	664-665
Section 333: Ocean Currents	666-667
Section 334: Ocean Currents	668-669
Section 335: Ocean Currents	670-671
Section 336: Ocean Currents	672-673
Section 337: Ocean Currents	674-675
Section 338: Ocean Currents	676-677
Section 339: Ocean Currents	678-679
Section 340: Ocean Currents	680-681
Section 341: Ocean Currents	682-683
Section 342: Ocean Currents	684-685
Section 343: Ocean Currents	686-687
Section 344: Ocean Currents	688-689
Section 345: Ocean Currents	690-691
Section 346: Ocean Currents	692-693
Section 347: Ocean Currents	694-695
Section 348: Ocean Currents	696-697
Section 349: Ocean Currents	698-699
Section 350: Ocean Currents	700-701
Section 351: Ocean Currents	702-703
Section 352: Ocean Currents	704-705
Section 353: Ocean Currents	706-707
Section 354: Ocean Currents	708-709
Section 355: Ocean Currents	710-711
Section 356: Ocean Currents	712-713
Section 357: Ocean Currents	714-715
Section 358: Ocean Currents	716-717
Section 359: Ocean Currents	718-719
Section 360: Ocean Currents	720-721
Section 361: Ocean Currents	722-723
Section 362: Ocean Currents	724-725
Section 363: Ocean Currents	726-727
Section 364: Ocean Currents	728-729
Section 365: Ocean Currents	730-731
Section 366: Ocean Currents	732-733
Section 367: Ocean Currents	734-735
Section 368: Ocean Currents	736-737
Section 369: Ocean Currents	738-739
Section 370: Ocean Currents	740-741
Section 371: Ocean Currents	742-743
Section 372: Ocean Currents	744-745
Section 373: Ocean Currents	746-747
Section 374: Ocean Currents	748-749
Section 375: Ocean Currents	750-751
Section 376: Ocean Currents	752-753
Section 377: Ocean Currents	754-755
Section 378: Ocean Currents	756-757
Section 379: Ocean Currents	758-759
Section 380: Ocean Currents	760-761
Section 381: Ocean Currents	762-763
Section 382: Ocean Currents	764-765
Section 383: Ocean Currents	766-767
Section 384: Ocean Currents	768-769
Section 385: Ocean Currents	770-771
Section 386: Ocean Currents	772-773
Section 387: Ocean Currents	774-775
Section 388: Ocean Currents	776-777
Section 389: Ocean Currents	778-779
Section 390: Ocean Currents	780-781
Section 391: Ocean Currents	782-783
Section 392: Ocean Currents	784-785
Section 393: Ocean Currents	786-787
Section 394: Ocean Currents	788-789
Section 395: Ocean Currents	790-791
Section 396: Ocean Currents	792-793
Section 397: Ocean Currents	794-795
Section 398: Ocean Currents	796-797
Section 399: Ocean Currents	798-799
Section 400: Ocean Currents	800-801
Section 401: Ocean Currents	802-803
Section 402: Ocean Currents	804-805
Section 403: Ocean Currents	806-807
Section 404: Ocean Currents	808-809

Student Digital Notebook

The student notebook is on Google Drive and ready for you to share with your students. Here's a quick overview of the features:

Set up like a traditional interactive notebook with input and output sides.

Directions: Click and drag the vocabulary terms below to label the Water Cycle. Click the link (water drop) to explore the Water Cycle Webquest, or use what you learned to answer the following questions.

THE WATER CYCLE

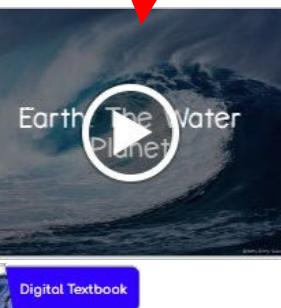
EARTH: THE WATER PLANET

About _____% of earth's water is saltwater found in the _____, while the other _____% is freshwater.

- the chemical formula used to represent water's unique structure. It is made up of _____ hydrogen atoms (H) and _____ oxygen atom (O) to form a water molecule.

Polar molecule -

- Surface tension -
- Universal solvent -
- Capillary action -
- Changing state -
- evaporation -
- condensation -


The Water Cycle -

- evaporation -
- transpiration -
- condensation -
- precipitation -
- groundwater -

Encouraging independent learners. Directions for output side are here along with what they need to complete the activity.

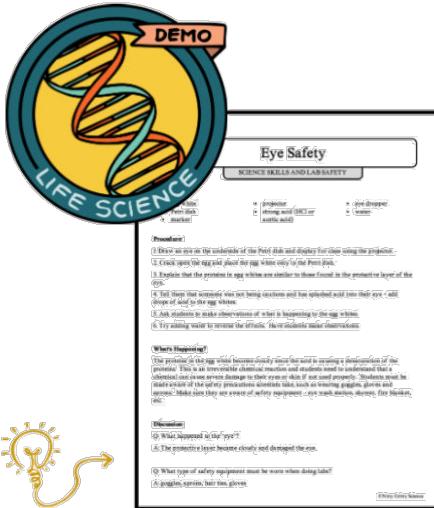
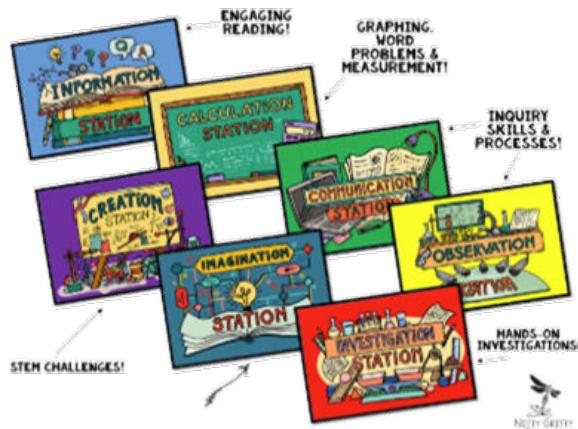
Hyperlinked tabs so student can easily move through chapter for review

Students watch video < 6 min to complete notes.

For further exploration, click button(s) below:

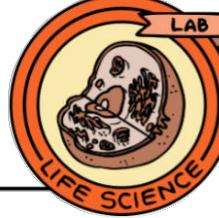
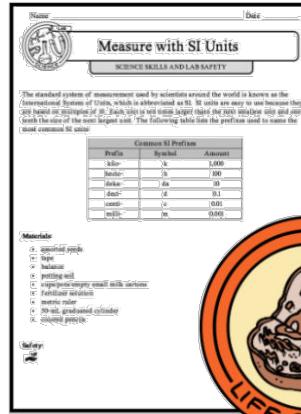
Notes are chunked into manageable sections with large spaces for textboxes

Some pages have links so students can go deeper into the topic if they need.



Demos, labs, & Science Stations

Working in the lab and being engaged in science experiments is the most exciting part of science.

Demo, Labs, and Science Stations Includes:



1. **SCIENCE STATION SIGNAGE** for all 7 stations is provided in color and in black and white (see preview) and all student answer sheets have icons that correspond with each station for ease of use.
2. **DEMONSTRATION** (teacher-led) allows teachers to invite scientific discussions and can help uncover misconceptions and, most importantly, lead to heightened curiosity and interest in the topic being studied.
3. **GUIDED INQUIRY LAB** which is a traditional lab that allows students to perform an investigation in order to solve a problem. Students will hypothesize, collect and analyze data and communicate their results.
4. **TEACHER GUIDES to DEMOS & SCIENCE STATIONS** help get you started and give you background information to make your science lessons engaging.
5. **7 SCIENCE STATIONS** which are designated locations in the classroom with activities that challenge students to extend their knowledge and elaborate on their science skills by working independently of the teacher in small groups or pairs. Stations included are:
 - INFORMATION STATION – Group members will read an interesting and relevant science passage then complete a task to help increase science literacy and deepen their understanding of the science concept.
 - OBSERVATION STATION – Group members will have images, illustrations, or actual samples at this station that show applications or processes of the science topic. Using what they've learned, they will need to apply their observation skills to complete the questions attached to each.
 - CALCULATION STATION – Group members use their math skills to complete the station challenge. Skills may include graphing, analyzing data, using models, measurement, and calculating formulas or word problems.
 - INVESTIGATION STATION – Group members will work with one another to explore the concept through hands-on activities so they may practice specific inquiry process skills as they learn.
 - COMMUNICATION STATION – There are three different options for this station: interviews, video, group essay. Depending on the option you choose, group members will communicate what they know by answering questions in creative ways.
 - CREATION STATION – Group members will work together to solve a STEM (Science, Technology, Engineering, Math) challenge by creating models or designs that demonstrate their understanding of the science topic being taught.
 - IMAGINATION STATION – This station makes science concepts relevant for students by asking them to imagine scenarios that will bring about discussion and critical thinking.
6. **INQUIRY PROCESS SKILLS CHECKLIST** is provided with each set to show teachers and administrators the inquiry skills used by students in each activity. These skills include, but are not limited to, communicating, creating models, inferring, classifying, identifying variables, measuring, observing, predicting, gathering and organizing data, comparing and contrasting, interpreting data, and manipulating materials.

SCIENCE STATIONS

Teacher guide and answer key offered for every lab!

Easy-to-get materials!

USER-FRIENDLY PAGES:

Students easily recognize which answer sheet to use at each station by matching station icons located on each page!!

Drip, Drop, Splat!

How does the density of a liquid and drop height affect the size and shape of droplet splatters?

Materials:

- colored water (graduated cylinder A)
- colored syrup (graduated cylinder B)
- eye dropper
- paper
- metric ruler
- meter stick

Procedure:

1. Make a hypothesis of how density of a liquid will affect splatter size on your lab sheet.
2. Place the piece of paper down on the lab table in order to catch droplets.
3. Measure the heights listed in the data table using a meter stick. Place meter stick with end starting at zero on paper and move up stick when measuring height of drops.
4. Use the eye dropper to drip ONE drop of colored water and ONE drop of colored syrup. Make sure to drop on different places on paper.
5. Measure the size of the splatter in MILLIMETERS. Record in data table on answer sheet.
6. Repeat for each height.
7. Use the collected data to graph the splatter size versus drop height for each liquid.

Analyze and Conclude

1. Was your hypothesis correct? Explain.
2. What are two controls in your experiment that helped you collect the most accurate data possible?

INVESTIGATION

Name _____ Date _____

Hypothesis

Drop (height cm)

Colored Water	Colored Syrup			
5	25	50	75	100

Height of Drop vs. Splatter Size

Legend: Water Syrup

Node of Drop (cm)

Rate of Drop (cm/s)

Analyze and Conclude:

1. _____

2. _____

TEACHERS SAVE TIME:
Laminate station pages and reuse for each class and for years to follow!
Inquiry skills used are timeless!

Instructional Videos

Earth's Waters Instructional Videos and Digital Assessments are designed to help teachers move instruction from the group learning space to the individual learning space. Not only does this give students independence in their learning, but it also allows more time for dynamic and interactive learning when teachers meet with students in a group setting.

This resource is perfect for:

- Flipped Classroom
- Absent students
- 1:1 Classrooms
- Sub Plans
- Hybrid Schedules
- Teachers who want more time to guide students as they apply concepts and engage creatively in the subject matter

Features of this resource include:

- Instructional videos which are six minutes or less to keep students focused
- Videos and assessments can be completed independently
- Auto grading and reporting in Google Forms
- Share link with students through educational platforms or email
- Quizzes are editable with 5 - 8 questions per quiz
- Information in video pairs with NGS Magnified Interactive Notebooks

Task Cards & Digital Task Cards

Task cards are a great tool for concept review that can be used in a variety of ways – pairs, small groups, team games, or individually. The reason they are so effective is there is only ONE task per card, allowing students to focus on that single task until they have successfully completed it. Answers sheet and answer key for teachers are included.

The digital, self-checking task cards are hosted at Boom Learning™ and are compatible with Google Classroom. These are perfect for displaying on your interactive whiteboard and leading class games or review sessions.

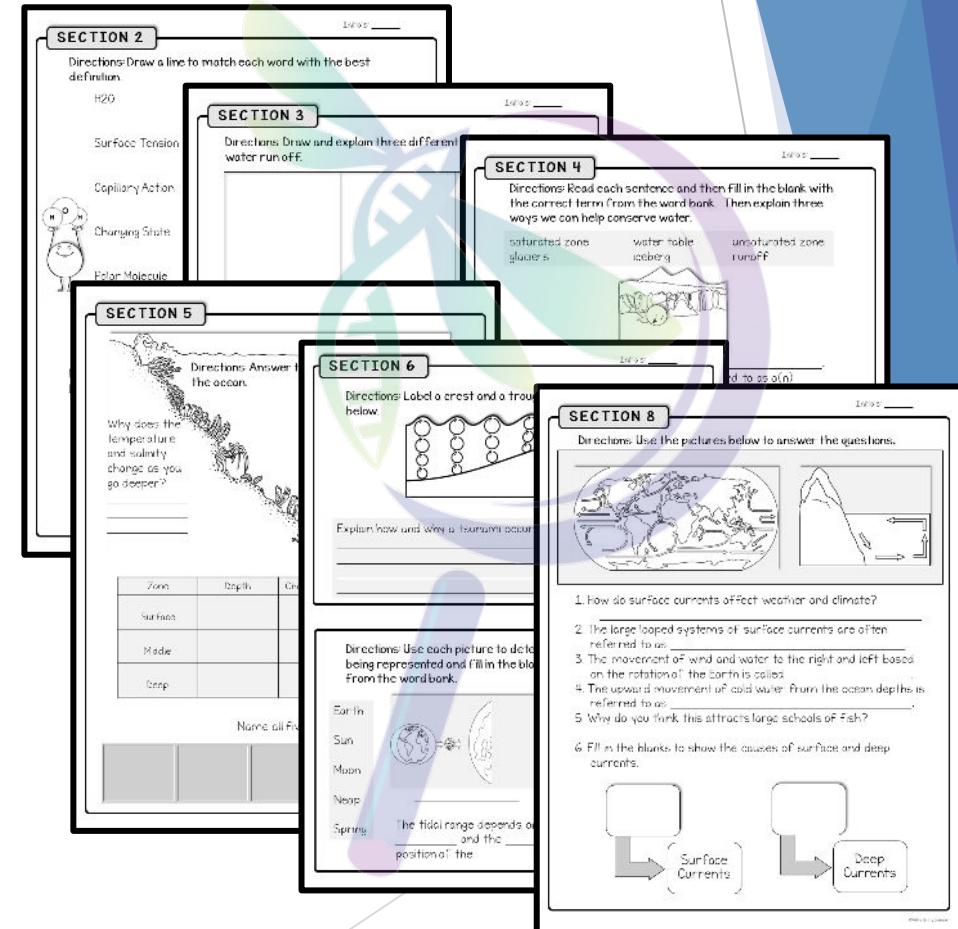
Print Task Cards

The print task cards are arranged in a 4x4 grid. Each card has a blue header with the title 'Earth's Waters' and a numbered circle (1-16). The cards are categorized into four types: DECIDE, DESCRIBE, IDENTIFY, and COMPLETE. Each card contains a question, a diagram, and a list of multiple-choice answers (a, b, c, d). The cards are designed to be cut out and used as individual task cards.

- DECIDE**
The source of energy for the water cycle is ____.
a. gravity b. waves c. precipitation d. the sun
- DESCRIBE**
When plants release water to air through their leaves, this is called ____.
- DECIDE**
As you go deeper in the ocean, all of the following decrease except ____.
a. light b. pressure c. temperature d. amount of algae
- COMPLETE**
The chemical formula H_2O is used to represent water's unique structure, which is made of two ____ atoms bonded with one ____ atom.
- DECIDE**
The water in an artesian well rises because of pressure in a(n) ____.
a. watershed b. reservoir c. aquifer d. point source
- IDENTIFY**
Identify the step of the water cycle indicated by the ★.
- DECIDE**
A(n) ____ is a man-made hole drilled below the water table in order to obtain ground water from an aquifer.
- DESCRIBE**
Describe where ground water comes from.

Digital Task Cards

The digital task cards are displayed on a whiteboard. Each card has a blue header with the title 'Earth's Waters' and a numbered circle (1-16). The cards are categorized into four types: DECIDE, DESCRIBE, IDENTIFY, and COMPLETE. Each card contains a question, a diagram, and a list of multiple-choice answers (a, b, c, d). The cards are designed to be used on a digital device with a touch screen.


- DECIDE**
Identify whether the positions of the Earth, sun, and moon would cause a spring or neap tide.
- COMPLETE**
The average salinity of ocean water is ____ of salt per kilogram of water.
350g
35g
- DECIDE**
In the Northern Hemisphere, currents curve to the right because of the ____.
Coriolis effect
moon's gravity
longshore drift
density

Study Guides: Includes print or digital options

NGS Magnified Study Guides are directly aligned to the notes and assessments offered by NGS Magnified and include a variety of review strategies that meet the needs of your learners for independent study and indirect instruction.

Each study guide provides a combination of strategies which may include:

- Graphic organizers
- Vocabulary building
- Compare and contrast
- Problem-solving
- Concept mapping
- Interpreting data
- Critical thinking
- Theme connection
- Matching
- Fill-in-the-blank
- Short answer
- Real-world application
- QR videos with accompanying questions

Assessments:

Teachers can use a variety of assessments to evaluate student progress throughout the unit. The curriculum provides mini-quizzes for each Interactive Notebook chapter and an online assessments that goes with the instructional videos. The chapter test includes multiple choice, short answer, interpreting diagrams, and an essay.

Name: _____ Date: _____

Quia: Fresh Water

Match the term with the proper description

1. geyser	a. layer of rock
2. well	b. area of land
3. geyser	c. huge show
4. water system	d. collection of
5. aquifer	e. man-made
6. natural spring	f. location with
7. wetlands	g. type of rock
8. karst	h. collection of
	water to a

Name: _____ Date: _____

Quia: Fresh Water

Match the term with the proper description

1. geyser	a. layer of rock
2. well	b. area of land
3. geyser	c. huge show
4. water system	d. collection of
5. aquifer	e. man-made
6. natural spring	f. location with
7. wetlands	g. type of rock
8. karst	h. collection of
	water to a

CHAPTER TEST: DRAFT TO USE

Multiple Choice

Choose the answer. If not best complete each statement.

1. The theory that reflects the idea that there is a limited number of species over time is _____.

- a. Hardy-Weinberg
- b. Hardy-Weinberg
- c. Hardy-Weinberg
- d. Hardy-Weinberg

2. Below are the facts and concepts about biology are _____.

- a. living things
- b. non-living things
- c. both living and non-living things
- d. neither living nor non-living things

3. Living things _____.

- a. are plants
- b. are animals
- c. are microorganisms
- d. are viruses

4. The study of _____ is learning about the _____.

- a. environment
- b. environment
- c. environment
- d. environment

5. Most living things _____.

- a. are plants
- b. are animals
- c. are microorganisms
- d. are viruses

6. A group of all _____ are called a population.

- a. individuals
- b. individuals
- c. individuals
- d. individuals

7. Living things _____.

- a. are plants
- b. are animals
- c. are microorganisms
- d. are viruses

8. The three common types of logic problems are called _____.

- a. deductive
- b. inductive
- c. deductive
- d. deductive

9. Quantitative research is the _____.

- a. graphs or charts
- b. description of behavior
- c. description of behavior
- d. all of the above

10. What is the first thing you do?

- a. Fix the oven pipe leak
- b. Do the important project
- c. Start first aid measures
- d. None of the above

11. Doing one or more of your _____.

- a. cleaning
- b. cleaning
- c. cleaning
- d. cleaning

12. In deductive research, the first thing you should do is _____.

- a. Fix the oven pipe leak
- b. Do the important project
- c. Start first aid measures
- d. None of the above

13. _____ is the first thing you do?

- a. Fix the oven pipe leak
- b. Do the important project
- c. Start first aid measures
- d. None of the above

14. _____ is used to make small details of an object visible to a scientist.

- a. A microscope
- b. A microscope
- c. A microscope
- d. None of the above

15. _____ alert you to possible dangers and identify safety equipment you should use.

- a. A microscope
- b. A microscope
- c. A microscope
- d. None of the above

16. The simulation _____ and of life is _____.

- a. The simulation _____ and of life is _____.
- b. The simulation _____ and of life is _____.
- c. The simulation _____ and of life is _____.
- d. The simulation _____ and of life is _____.

17. When classifying your things into categories or group together items that are alike in some way, they are _____.

- a. arranged
- b. arranged
- c. Grouped
- d. making models

18. _____ is a hidden trouble, the first thing you should do is _____.

- a. Fix a microscope for help
- b. read a microscope for help
- c. None of the above
- d. None of the above

19. _____ is used to make small details of an object visible to a scientist.

- a. A microscope
- b. A microscope
- c. A microscope
- d. None of the above

20. The simulation _____ and of life is _____.

- a. The simulation _____ and of life is _____.
- b. The simulation _____ and of life is _____.
- c. The simulation _____ and of life is _____.
- d. The simulation _____ and of life is _____.

ANSWER KEY INCLUDED — IMAGES ARE BLURRED FOR COPYRIGHT REASONS

EDITABLE CHAPTER TEST INCLUDES MULTIPLE CHOICE, FILL IN THE BLANK, INTERPRETING DIAGRAMS, & SHORT ANSWERS QUESTIONS

Terms of Use:

Thank you for sharing NGS Magnified with your students!

Terms of Use

Copyright © NGS Magnified, LLC (formerly Nitty Gritty Science, LLC.) All rights reserved by author Dr. Erica Colón. This product is to be used by the original downloader only. Copying for more than one teacher, classroom, department, school, or school system is prohibited. This product may not be distributed or displayed digitally for public view. Failure to comply is a copyright infringement and a violation of the Digital Millennium Copyright Act (DMCA). Clipart and elements found in this PDF are copyrighted and cannot be extracted and used outside of this file without permission or license. Intended for classroom and personal use ONLY.

Contact Information:

Email: admin@nittygrittyscience.com

Website: www.NGSmagnified.com

TPT: <https://www.teacherspayteachers.com/Store/Nitty-Gritty-Science>

